联系电话:金先生上海温岭电力变压器回收总公司发布;专业回收变压器、上海二手变压器回收价格咨询;高价回收变压器公司;南京变压器回收、无锡变压器回收、苏州变压器回收、二手变压器回收再利用公司;公司立足上海,辐射长三角在(江苏、上海、安徽、山东、福建、浙江、江西、湖南、四川、北京),等各地都设有办事处。欢迎有货源单位来电咨询报价。信息长期有效!欢迎新老顾客来电咨询洽谈!联系电话:金先生高价回收上海地区各类二手变压器。变压器、干式变压器、箱式变压器、特种变压器、三相油浸变压器、电炉变压器、调压变压器、磁性变压器、电站变压器、、电厂变压器、整流变变压器、工频试验变压器、:矿用变压器、音频变压器、中频变压器、高频变压器、冲击变压器、电子变压器、电抗器、互感器、配电系统、高压配电柜、低压配电柜、电线电缆,另回事进口发电机,资金雄厚,价格合理,欢迎提供有偿中介,我公司长期收购回收各类旧变压器,高阶回收二手变压器再利用公司;回收二手变压器回收;公司立足上海,辐射长三角在(南京、苏州、无锡、常州,武汉)等各地都设有办事处。欢迎有货源单位来电咨询报价。信息长期有效!欢迎新老顾客来电咨询洽谈!
上海二手变压器回收 上海变压器回收 上海回收变压器
旧变压器回收范围:
一、按相数分:
(1)单相变压器:用于单相负荷和三相变压器组。
(2)三相变压器:用于三相系统的升、降电压。
二、按冷却方式分:
(1)干式变压器:依靠空气对流进行冷却,一般用于局部照明、电子线路等小容量变压器。
(2)油浸式变压器:依靠油作冷却介质、如油浸自冷、油浸风冷、油浸水冷、强迫油循环等。
三、按用途分:
(1)电力变压器:用于输配电系统的升、降电压。
(2)仪用变压器:如电压互感器、电流互感器、用于测量仪表和继电保护装置。
(3)试验变压器:能产生高压,对电气设备进行高压试验。
(4)特种变压器:如电炉变压器、整流变压器、调整变压器等
四、按绕组形式分:
(1)双绕组变压器:用于连接电力系统中的两个电压等级。
(2)三绕组变压器:一般用于电力系统区域变电站中,连接三个电压等级。
(3)自耦变电器:用于连接不同电压的电力系统。也可做为普通的升压或降后变压器用。
五、按铁芯形式分:
(1)芯式变压器:用于高压的电力变压器。
(2)壳式变压器:用于大电流的特殊变压器,如电炉变压器、电焊变压器;或用于电子仪器及电视、收音机等的电源变压器。等报废或废旧或二手变压器回收。
上海二手变压器回收 上海变压器回收 上海回收变压器
上海二手变压器回收 上海变压器回收 上海回收变压器
上海二手变压器回收 上海变压器回收 上海回收变压器变压器
编辑词条
变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁心(磁芯)。在电器设备和无线电路中,常用作升降电压、匹配阻抗,安全隔离等。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。按用途可以分为:配电变压器、电力变压器、全密封变压器、组合式变压器、干式变压器、油浸式变压器、单相变压器、电炉变压器、整流变压器等。
目
录
1物质介绍
2成分结构
3生产工艺
4工作原理
5主要分类
6相关功能
7历史沿革
8相关参数
9主要区别
10检查规定
11问题处理
12安全规程
13竞争格局
14其它内容
15国家标准
16相关信息
17变压器与新能源的关系
18变压器的空载损耗属性
1 物质介绍
在电器设备和无线电路中,[1]变压器常用作升降电压、匹配阻抗,安全隔离等。在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。
变压器变压器的基本形式,包括两组绕有导线之线圈,并且彼此以电感方式称合一起。当一交流电流(具有某一已知频率)流于其中之一组线圈时,于另一组线圈中将感应出具有相同频率之交流电压,而感应的电压大小取决于两线圈耦合及磁交链之程度。
一般指连接交流电源的线圈称之为一次线圈;而跨于此线圈的电压称之为一次电压。在二次线圈的感应电压可能大于或小于一次电压,是由一次线圈与二次线圈间的匝数比所决定的。因此,变压器区分为升压与降压变压器两种。
大部分的变压器均有固定的铁芯,其上绕有一次与二次的线圈。基于铁材的高导磁性,大部分磁通量局限在铁芯里,因此,两组线圈藉此可以获得相当高程度之磁耦合。在一些变压器中,线圈与铁芯二者间紧密地结合,其一次与二次电压的比值几乎与二者之线圈匝数比相同。因此,变压器之匝数比,一般可作为变压器升压或降压的参考指标。由于此项升压与降压的功能,使得变压器已成为现代化电力系统之一重要附属物,提升输电电压使得长途输送电力更为经济,至于降压变压器,它使得电力运用方面更加多元化,可以这样说,没有变压器,现代工业实无法达到目前发展的现状。
变压器又有其做试验而用的,称之为试验变压器,分别可以分为充气式,油浸式,干式等试验变压器,是发电厂、供电局及科研单位等广大用户的用来做交流耐压试验的基本试验设备,通过了国家质量监督局的标准,用于对各种电气产品、电器元件、绝缘材料等进行规定电压下的绝缘强度试验。
运行维护
1、防止变压器过载运行:如果长期过载运行,会引起线圈发热,使绝缘逐渐老化,造成匣间短路、相间短路或对地短路及油的分解;
2、防止变压器铁芯绝缘老化损坏:铁芯绝缘老化或夹紧螺栓套管损坏,会使铁芯产生很大的涡流,引起铁芯长期发热造成绝缘老化;
3、防止检修不慎破坏绝缘:变压器检修吊芯时,应注意保护线圈或绝缘套管,如果发现有擦破损伤,应及时处理。
2 成分结构
变压器组成部件包括器身(铁芯、绕组、绝缘、引线)、变压器油、油箱和冷却装置、调压装置、保护装置(吸湿器、安全气道、气体继电器、储油柜及测温装置等)和出线套管。
1、铁芯[2]
铁芯是变压器中主要的磁路部分。通常由含硅量较高,厚度分别为0.35 mm0.3mm0.27 mm,由表面涂有绝缘漆的热轧或冷轧硅钢片叠装而成。
铁芯分为铁芯柱和横片两部分,铁芯柱套有绕组;横片是闭合磁路之用。
铁芯结构的基本形式有心式和壳式两种。
2、绕组
绕组是变压器的电路部分,它是用双丝包绝缘扁线或漆包圆线绕成。
变压器的构成
一个变压器通常包括:
两组或以上的线圈:以输入交流电电流与输出感应电流。
一圈金属芯:它把互感的磁场与线圈耦合在一起。
变压器一般运行在低频、导线围绕铁芯缠绕成绕组。虽然铁芯会造成一部分能量的损失,但这有助于将磁场限定在变压器内部,并提高效率。 电力变压器按照铁芯和绕组的结构分为芯式结构和壳式结构,以及按照磁通的分支数目(三相变压器有3,4或5个分支)分类。它们的性能各不相同。
变压器芯
薄片钢芯
变压器通常采用硅钢材料的铁芯作为主磁路。这样可以使线圈中磁场更加集中,变压器更加紧凑。 电力变压器的铁芯在设计的时候必须保防止达到磁路饱和,有时需要在磁路中设计一些气隙减少饱和。 实际使用的变压器铁芯采用非常薄,电阻较大的硅钢片叠压而成。 这样可以减少每层涡流带来的损耗和产生的热量。 电力变压器和音频电路有相似之处。典型分层铁芯一般为E和I字母的形状,称作“EI变压器”。 这种铁芯的一个问题就是当断电之后铁芯中会保持剩磁。 当再次加电后,剩磁会造成铁芯暂时饱和。 对于一些容量超过数百瓦的变压器会造成的严重后果,如果没有采用限流电路,涌流可造成主熔断器熔断。 更严重的是,对于大型电力变压器,涌流可造成主绕组变形、损害。
实芯铁芯
在如开关电源之类的高频电路中,有时使用具有较高的磁导率和电阻率的铁磁材料粉末铁芯。 在更高的频率下,需要使用绝缘体导磁材料,常见的有各种称作铁素体的陶瓷材料。 在一些调频无线电电路中的一些变压器铁芯采用可调铁芯,来配合耦合电路达到谐振。
空气芯
卷铁芯
线圈线圈由电磁线所构成,用于环绕铁蕊,藉以通电产生磁场,或是经由磁场产生感应电流。
绝缘保护
屏蔽物
冷却剂有的变压器利用液态物质的循环进行热量的疏散。常用的液态物质为变压器油(英语:transformer oil),其主要成分为烷烃、环烷烃、芳香烃等化合物。变压器油比热容较大,它吸收热量体积膨胀上升,在管中形成循环,再通过散热装置将热量散发到空气中。 有的变压器利用气态物质(如六氟化硫)作为冷却剂。由于导热能力的限制,气体冷却剂一般应用于小容量变压器。
关于变压器油,绝大多数采用的是矿物油, 极少数的变压器采用的是植物油。矿物油泄露可能会对环境造成污染,而植物油污染程度就会少很多。而且植物油的闪点要比矿物油的高。所以,在将来,植物油可能会取代矿物油。
3 生产工艺
产量
随着中国经济持续健康高速发展,电力需求持续快速增长。2011年全国全社会用电量4.69万亿千瓦时,比上年增长11.7%,消费需求依然旺盛。人均用电量3483千瓦时,比上年增加351千瓦时,超过世界平均水平。
中国电力建设的迅勐发展带动了中国变压器制造行业的发展。2011年,全国变压器的产量达14.3亿千伏安,同比增长6.86%。2011年,中国变压器制造行业规模以上(主营业务收入2000万元以上)企业有1461家;实现销售额2901.40亿元,实现利润总额166.08亿元,资产规模为2638.40亿元,产品销售利润为339.72亿元。
变压器中国变压器行业竞争激烈,外资跨国公司抢占了很大市场份额,国内变压器制造企业数量也在快速增长。例如山东永成变压器,中低端变压器市场竞争激烈,具备220KV变压器生产能力的企业有20余家,具备110KV变压器产品生产能力的企业有100余家。而生产500KV等级以上变压器企业通过技术和产能构筑了很高的进入壁垒,市场格局趋于稳定。
根据规划,国家电网“十二五”期间将投资约2.55万亿用于电网建设,相比“十一五”期间的1.5万亿元,“十二五”电网投资额同比提升了68%。细分来看,2.55万亿中将有5000亿用于特高压电网投资,5000亿用于配电网投资,另外约1.55万亿用于其他电压等级的电网线路投资。
在特高压电网投资中,特高压交流的投资额约为2700亿元。特高压交流的主要设备包括特高压变压器、电抗器、GIS组合开关、互感器等设备。在特高压投资中,设备投资约占45%,其中变压器(含电抗器)占设备投资约30%,由此测算,“十二五”期间,变压器(含电抗器)的市场容量超过360亿元。
绕制材料
要绕制一个变压器我们必须对与变压器有关的材料要有一定的认识,为此这里我就介绍一下这方面的知识。
1、铁芯材料
变压器使用的铁芯材料是铁片中加入硅能降低钢片的导电性,增加电阻率,它可减少涡流,使其损耗减少。我们通常称为加了硅的钢片为硅钢片,变压器的质量所用的硅钢片的质量有很大的关系,硅钢片的质量通常用磁通密度B来表示,一般黑铁片的B值为6000-8000、低硅片为9000-11000,高硅片为12000-16000。
2、绕制变压器通常用的材料
漆包线,纱包线,丝包线纸包线,常用的漆包线。对于导线的要求,是导电性能好,绝缘漆层有足够耐热性能,并且要有一定的耐腐蚀能力。一般情况下好用QZ型号的高强度的聚脂漆包线。
3、绝缘材料
在绕制变压器中,线圈框架层间的隔离、绕阻间的隔离,均要使用绝缘材料,一般的变压器框架材料可用酚醛纸板制作,环氧板,或纸板。层间可用聚脂薄膜,电话纸,6520复合纸等作隔离,绕阻间可用黄腊布,或亚胺膜作隔离。
4、浸渍材料
变压器绕制好后,还要过后一道工序,就是浸渍绝缘漆,它能增强变压器的机械强度、提高绝缘性能、延长使用寿命,一般情况下,可采用清漆作为浸渍材料 或1032绝缘漆,树脂漆。
4 工作原理
变压器是变换交流电压、交变电流和阻抗的器件, 上海硕工——变压器当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。
变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。
5 主要分类
一般常用变压器的分类可归纳如下:
1、按相数分:
1)单相变压器:用于单相负荷和三相变压器组。
2)三相变压器:用于三相系统的升、降电压。
2、按冷却方式分:
1)干式变压器:依靠空气对流进行自然冷却或增加风机冷却,多用于高层建筑、高速收费站点用电及局部照明、电子线路等小容量变压器。
变压器2)油浸式变压器:依靠油作冷却介质、如油浸自冷、油浸风冷、油浸水冷、强迫油循环等。
3、按用途分:
1)电力变压器:用于输配电系统的升、降电压。
2)仪用变压器:如电压互感器、电流互感器、用于测量仪表和继电保护装置。
3)试验变压器:能产生高压,对电气设备进行高压试验。
4)特种变压器:如电炉变压器、整流变压器、调整变压器、电容式变压器、移相变压器等。
4、按绕组形式分:
1)双绕组变压器:用于连接电力系统中的两个电压等级。
2)三绕组变压器:一般用于电力系统区域变电站中,连接三个电压等级。
3)自耦变电器:用于连接不同电压的电力系统。也可做为普通的升压或降后变压器用。
5、按铁芯形式分:
1)芯式变压器:用于高压的电力变压器。
2)非晶合金变压器:非晶合金铁芯变压器是用新型导磁材料,空载电流下降约80%,是目前节能效果较理想的配电变压器,特别适用于农村电网和发展中地区等负载率较低的地方。
3)壳式变压器:用于大电流的特殊变压器,如电炉变压器、电焊变压器;或用于电子仪器及电视、收音机等的电源变压器。
6 相关功能
变压器的功能主要有:电压变换;电流变换,阻抗变换;隔离;稳压(磁饱和变压器);自耦变压器;高压变压器(干式和油浸式)等,变压器常用的铁芯形状一般有E型和C型铁芯,XED型,ED型CD型。
变压器的基本型式,包括两组绕有导线之线圈,并且彼此以电感方式称合一起。当一交流电流(具有某一已知频率)流于其中之一组线圈时,于另一组线圈中将感应出具有相同频率之交流电压,而感应的电压大小取决于两线圈耦合及磁交链之程度。
变压器一般指连接交流电源的线圈称之为「一次线圈」(Primary coil);而跨于此线圈的电压称之为「一次电压.」。在二次线圈的感应电压可能大于或小于一次电压,是由一次线圈与二次线圈问的「匝数比」所决定的。因此,变压器区分为升压与降压变压器两种。
大部份的变压器均有固定的铁芯,其上绕有一次与二次的线圈。基于铁材的高导磁性,大部份磁通量局限在铁芯里,因此,两组线圈藉此可以获得相当高程度之磁耦合。在一些变压器中,线圈与铁芯二者间紧密地结合,其一次与二次电压的比值几乎与二者之线圈匝数比相同。因此,变压器之匝数比,一般可作为变压器升压或降压的参考指标。由于此项升压与降压的功能,使得变压器已成为现代化电力系统之一重要附属物,提升输电电压使得长途输送电力更为经济,至于降压变压器,它使得电力运用方面更加多元化,吾人可以如是说,倘无变压器,则现代工业实无法达到目前发展的现况。
电子变压器除了体积较小外,在电力变压器与电子变压器二者之间,并没有明确的分界线。一般提供60Hz电力网络之电源均非常庞大,它可能是涵盖有半个洲地区那般大的容量。电子装置的电力限制,通常受限于整流、放大,与系统其它组件的能力,其中有些部份属放大电力者,但如与电力系统发电能力相比较,它仍然归属于小电力之范围。
各种电子装备常用到变压器,理由是:提供各种电压阶层确保系统正常操作;提供系统中以不同电位操作部份得以电气隔离;对交流电流提供高阻抗,但对直流则提供低的阻抗;在不同的电位下,维持或修饰波形与频率响应。「阻抗」其中之一项重要概念,亦即电子学特性之一,其乃预设一种设备,即当电路组件阻抗系从一阶层改变到另外的一个阶层时,其间即使用到一种设备-变压器。
7 历史沿革
近几年,为适应国家在城乡电网改造的需求,发展了一批新型、优质的配电变压器,使配电网络的变压器装备更趋先进,供电更可靠,农村用电更趋低价。
变压器近年发展的配电变压器的损耗值在不断下降,尤其空载损耗值下降更多,这主要归功于磁性材料导磁性能的改进,其次是导磁结构铁心型式的多样化。如较薄高导磁硅钢片或非晶合金的应用,阶梯接缝全斜结构铁心、卷铁心(平面型、立体型)、退火工艺的应用等。在降低损耗的同时也注意噪声水平的降低。在干式配电变压器方面又将局部放电试验列为例行试验,用户又对局部放电量有要求,作为干式配电变压器运行可靠性的一项考核指标,这比国际电工委员会规定的现行要求要严格。因此,在现有基础上预测我国各类配电变压器的发展趋势,推动配电变压器进一步发展应是一件比较重要工作。
要求防火、防爆的场所,如商业中心、机场、地铁、高层建筑、水电站等,常选用干式配电变压器。目前,国内已有几十个工厂能生产传统的环氧树脂浇注型干式配电变压器。既有无励磁调压,又有有载调压。正常运行时为自冷冷却方式,当装有吹风装置时提供急救条件(其他变压器有故障时起动风机)作为超铭牌容量运行。在国内,大三相单台容量可达20000kVA(35kV级),高电压等级可达110KV(单相10500kVA)。干式变压器的年产量已占整个配电变压器年产量的20%。鉴于环氧树脂浇注干式配电变压器还存在下列一些问题:
(1)设计的自由度不大,每个绕组都要用模具才能挠注。
(2)一旦在高温中燃烧会产生大量烟雾。
(3)由于环氧树脂与导线的热膨胀系数不尽相同,如果缓冲层设置不当,易在冷热温度冲击下,浇注层开裂,局部放电量增加,部分企业的个别产品已有此类质量问题在运行中暴露。
(4)环保问题,一旦这种环氧树脂浇注型干式配电变压器预期寿命已到,或因各种故障而使变压器绕组损坏,要销毁浇注成型的绕组是困难的,目前尚无法使环氧树脂降解。从环保角度上讲,这将是日益严重的问题。
(5)环氧树脂浇注型干式配电变压器多数属于F级耐温等级,仅个别企业能生产H级耐温等级的浇注型干式配电变压器。鉴于上述原因,目前已有部分企业在发展敞开通风干式H级配电变压器。
8 相关参数
技术
对不同类型的变压器都有相应的技术要求,可用相应的技术参数表示。如电源变压器的主要技术参数有:额定功率、额定电压和电压比、额定频率、工作温度等级、温升、电压调整率、绝缘性能和防潮性能,对于一般低频变压器的主要技述参数是:变压比、频率特性、非线性失真、磁屏蔽、静电屏蔽、效率等。
电压比
变压器两组线圈圈数分别为N1和N2,N1为初级,N2为次级。在初级线圈上加一交流电压,在次级线圈两端就会产生感应电动势.当N2>N1时,其感应电动势要比初级所加的电压还要高,这种变压器称为升压变压器:当N2<N1时,其感应电动势低于初级电压,这种变压器称为降变压器。初级次级电压和线圈圈数间具有下列关系:
U1/U2=N1/N2
式中n称为电压比(圈数比),当n<1时,则N1>N2,U1>U2,该变压器为降压变压器。反之则为升压变压器.
另有电流之比I1/I2=N2/N1
电功率P1=P2
注意:上面的式子,只在理想变压器只有一个副线圈时成立。当有两个副线圈时,P1=P2+P3,U1/N1=U2/N2=U3/N3,电流则须利用电功率的关系式去求,有多个时,依此类推。
效率
在额定功率时,变压器的输出功率和输入功率的比值,叫做变压器的效率,即:
η=(P2÷P1)x100%
式中,η为变压器的效率;P1为输入功率,P2为输出功率。当变压器的输出功率P2等于输入功率P1时,效率η等于100%,变压器将不产生任何损耗。但实际上这种变压器是没有的。变压器传输电能时总要产生损耗,这种损耗主要有铜损和铁损。
铜损是指变压器线圈电阻所引起的损耗.当电流通过线圈电阻发热时,一部分电能就转变为热能而损耗。由于线圈一般都由带绝缘的铜线缠绕而成,因此称为铜损。
变压器的铁损包括两个方面:一是磁滞损耗,当交流电流通过变压器时,通过变压器硅钢片的磁力线其方向和大小随之变化,使得硅钢片内部分子相互摩擦,放出热能,从而损耗了一部分电能,这便是磁滞损耗。另一是涡流损耗,当变压器工作时,铁芯中有磁力线穿过,在与磁力线垂直的平面上就会产生感应电流,由于此电流自成闭合回路形成环流,且成旋涡状,故称为涡流。涡流的存在使铁芯发热,消耗能量,这种损耗称为涡流损耗。
变压器的效率与变压器的功率等级有密切关系,通常功率越大,损耗与输出功率就越小,效率也就越高。反之,功率越小,效率也就越低。
参数判别
电源变压器标称功率、电压、电流等参数的标记,日久会脱落或消失。有的市售变压器根本不标注任何参数。这给使用带来极大不便。下面介绍无标记电源变压器参数的判别方法。此方法对选购电源变压器也有参考价值。
变压器1、识别电源变压器
1)从外形识别:常用电源变压器的铁芯有E形和C形两种。E形铁芯变压器呈壳式结构(铁芯包裹线圈),采用D41.D42优质硅钢片作铁芯,应用广泛。C形铁芯变压器用冷轧硅钢带作铁芯,磁漏小,体积小,呈芯式结构(线圈包裹铁芯)。
2)从绕组引出端子数识别:电源变压器常见的有两个绕组,即一个初级和一个次级绕组,因此有四个引出端。有的电源变压器为防止交流声及其他干扰,初、次级绕组间往往加一屏蔽层,其屏蔽层是接地端。因此,电源变压器接线端子至少是4个。
3)从硅钢片的叠片方式识别:E形电源变压器的硅钢片是交叉插入的,E片和I片间不留空气隙,整个铁芯严丝合缝。音频输入、输出变压器的E片和I片之间留有一定的空气隙,这是区别电源和音频变压器的直观方法。至于C形变压器,一般都是电源变压器。
2、功率的估算
电源变压器传输功率的大小,取决于铁芯的材料和横截面积。所谓横截面积,不论是E形壳式结构,或是E形芯式结构(包括C形结构),均是指绕组所包裹的那段芯柱的横断面(矩形)面积。在测得铁芯截面积S之后,即可按P=S2/1.5估算出变压器的功率P。式中S的单位是cm2。
3、各绕组电压的测量
要使一个没有标记的电源变压器利用起来,找出初级的绕组,并区分次级绕组的输出电压是基本的任务。
9 主要区别
稳压器与变压器的区别:
稳压器与变压器是相对的,变压器是改变交流电压的装置,主要构件是初级线圈、次级线圈和铁心(磁芯)。
变压器在电器设备和无线电路中,常用作升降电压、匹配阻抗,安全隔离等。[3]
而稳压器由调压电路、控制电路、及伺服电机等组成,当输入电压或负载变化时,控制电路进行取样、比较、放大,然后驱动伺服电机转动,使调压器碳刷的位置改变,通过自动调整线圈匝数比,从而保持输出电压的稳定。容量较大的稳压器,还采用电压补偿的原理工作。
比较
一、变压器的制作中,线圈的机器绕制和手工绕制各有什么优缺点?
变压器机器绕制变压器的优点是效率高且外观成形漂亮,但绕制高个子小洞眼的环型变压器却比较麻烦,而且在绝缘处理工艺的可靠性方面反不如手工绕制到位。手工绕制可以将变压器的漏磁做得非常小,其在绕制过程中能针对线圈匝数的布局随时予以调整,所以真正的Hi–END变压器一定是纯手工绕制,纯手工绕制的缺点是效率低、速度慢。
二、环型、EI型、R型、C型几种电源变压器哪一种好?
它们各有其优缺点而不存在谁好之说,所以严格来讲哪一种变压器都可以做得好。从结构上来讲,环型能够做到漏磁小,但声音听感方面EI型则可以把中频密度感做得更好一些。单就磁饱和而言,EI型要比环型强,但在效率上则环型又优于EI型。尽管如此,其问题的关键还是在于你能不能扬长避短而将它们各自的优点充分发挥出来,而这才是做好变压器的根本。
目前的进口放大器中,环型变压器的应用仍然是主流,这基本说明了一个问题。发烧友对变压器的评价要客观公正,你不能拿一个没做好的东西作参考而说它不好。有人说环型变压器容易磁饱和,那你为什么不去想办法把它做到不容易磁饱和?而原本通过技术手段是可以做到这一点的。不下足功夫或者一味地为了省成本,那它当然就容易磁饱和了。同理,只要你认真制作,EI型变压器的效率也是能做到很高的。
变压器的品质好坏对声音的影响很大,因为变压器的传输能量与铁芯、线圈密切关联,其传递速率对声音的影响起决定性作用。像EI型变压器,人们通常觉得它的中频比较厚,高频则比较纤细,为什么呢?因为它的传输速度相对比较慢。而环型呢?低频比较勐,中高频则又稍弱一点,为什么?因为它传输速度比较快,但是如果通过有效的结构改变,你就可以把环型和EI型都做得非常完美,所以关键还是要看你怎么做。
不过至少可以肯定一点的是,R型变压器不是太容易做好。用它来做小电流的前级功放和CD唱机电源还可以,如果用来做后级功放的电源,则有比较严重的缺陷。因为R型变压器本身的结构形式不太容易改变,而环型和EI型则相对容易通过改变结构来达到靓声目的。采用R型变压器制作的功率放大器电源,通常声音很板结而匮乏灵气,低频往往没有弹跳力而显得较硬。
三、变压器铁芯的硅钢片含硅量越大就越好吗?
未见得,硅钢片含硅量的大小对变压器的质量影响不是很大,而有取向和无取向则和铁芯的型号有关系。其次,即使是同样型号的铁芯如果你工艺处理不好,那品质差别也是很大的,其差别有时甚至高达百分之四五十。
好的铁芯而同样的材料其热处理和线卷绕制工艺十分关键,良好的热处理只需很小的10mA激磁电流就能达到15000高斯,而不好的热处理则可能要50mA的激磁电流才能达到相应的15000高斯,这二者之间的悬殊差别是很大的。从专业的角度来判断铁芯的好与不好,主要是通过激磁电流、铁损耗、饱和参数几项指标来进行综合性评价。
四、环型变压器的带式硅钢片若采用了拼接工艺,是不是就意味着品质肯定不好?
还不能一概而论,但是拼接的断位头不易太多,因为多一个断位就多了一个漏磁点,所以接头点好不要超过2–3个。制作工艺上凡断头拼接均要予先经过酸洗处理,但制造音响器材的环型变压器,严格来讲还是采用无拼接的硅钢片为好,其工艺质量会更有保障。
五、变压器中的硅钢片材料有什么讲究?
由于硅钢在交变磁场中的损耗很小,所以变压器主要都是采用硅钢片来作磁性材料。硅钢片可分为热轧和冷轧两类,冷轧硅钢带由于具有较高的导磁系数和较低的损耗,因此用来制作变压器具有体积小、重量轻、效率高的优势。热轧硅钢带的性能则略逊色于冷轧硅钢带。
普通的EI型变压器是将硅钢板冲制成0.35–0.5mm厚的E型和I型片子,经过热处理后再插入绕组线包内,这类铁芯以使用热轧硅钢片居多(含硅量很高的优质硅钢片型号为D41、D42、D43、D301)。环型和C型变压器的铁芯则是采用冷轧硅钢带经卷绕而成形,其中C型变压器系经热处理浸漆后再切开制成。
变压器的漏电感是由未穿过初、次级线圈的磁通产生的,这些磁通穿过空气而自成闭合磁路。增强变压器变压器初、次级间的耦合密度可以减小漏感。良好的变压器其漏感应不超过初级线圈电感的1/100,高保真Hi–Fi用的胆机输出变压器则不应超过1/500。
判断音响用变压器硅钢片质量高低的重要参数之一是硅钢片的大磁力线密度。常用的几种优质硅钢片型号如下∶D41–D42,大磁力线密度(单位–GS高斯)10000–12000GS;D43,大磁力线密度11000–12000GS;D301,大磁力线密度12000–14000GS。
10 检查规定
1、日常巡视每天应至少一次,夜间巡视每周应至少一次。
2、下列情况应增加巡视检查次数:
1)投运或检修、改造后投运72h内;
2)气象突变(如雷雨、大风、大雾、大雪、冰雹、寒潮等)时;
3)高温季节、高峰负载期间;
4)变压器过载运行时。
3、变压器日常巡视检查应包括以下内容:
1)油温应正常,应无渗油、漏油,储油柜油位应与温度相对应;
2)套管油位应正常,套管外部应无破损裂纹、无严重油污、无放电痕迹及其它异常现象;
3)变压器音响应正常;
4)散热器各部位手感温度应相近,散热附件工作应正常;
5)吸湿器应完好,吸附剂应干燥;
6)引线接头、电缆、母线应无发热迹象;
7)压力释放器、安全气道及防爆膜应完好无损;
8)分接开关的分接位置及电源指示应正常;
9)气体继电器内应无气体;
10)各控制箱和二次端子箱应关严,无受潮;
11)干式变压器的外表应无积污;
12)变压器室不漏水,门、窗、照明应完好,通风良好,温度正常;
13)变压器外壳及各部件应保持清洁。
检测
一、中周变压器的检测:
A、将万用表拨至R×1挡,按照中周变压器的各绕组引脚排列规律,逐一检查各绕组的通断情况,进而判断其是否正常。
B、检测绝缘性能:将万用表置于R×10k挡,做如下几种状态测试:
(1)初级绕组与次级绕组之间的电阻值
(2)初级绕组与外壳之间的电阻值
(3)次级绕组与外壳之间的电阻值。
上述测试结果分出现三种情况:
(1)阻值为无穷大:正常
(2)阻值为零:有短路性故障
(3)阻值小于无穷大,但大于零:有漏电性故障
二、电源变压器的检测:
A、通过观察变压器的外貌来检查其是否有明显异常现象。如线圈引线是否断裂,脱焊,绝缘材料是否有烧焦痕迹,铁芯紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。
B、绝缘性测试。用万用表R×10k挡分别测量铁芯与初级,初级与各次级、铁芯与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。否则,说明变压器绝缘性能不良。
C、线圈通断的检测。将万用表置于R×1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。
D、判别初、次级线圈。电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。再根据这些标记进行识别。
E、空载电流的检测。
(1)直接测量法。将次级所有绕组全部开路,把万用表置于交流电流挡(500mA,串入初级绕组。当初级绕组的插头插入220V交流市电时,万用表所指示的便是空载电流值。此值不应大于变压器满载电流的10%~20%。一般常见电子设备电源变压器的正常空载电流应在100mA左右。如果超出太多,则说明变压器有短路性故障。
(2)间接测量法。在变压器的初级绕组中串联一个10/5W的电阻,次级仍全部空载。把万用表拨至交流电压挡。加电后,用两表笔测出电阻R两端的电压降U,然后用欧姆定律算出空载电流I空,即I空=U/R。
F、空载电压的检测。将电源变压器的初级接220V市电,用万用表交流电压接依次测出各绕组的空载电压值(U21、U22、U23、U24)应符合要求值,允许误差范围一般为:高压绕组≤±10%,低压绕组≤±5%,带中心抽头的两组对称绕组的电压差应≤±2%。
G、一般小功率电源变压器允许温升为40℃~50℃,如果所用绝缘材料质量较好,允许温升还可提高。
H、检测判别各绕组的同名端。在使用电源变压器时,有时为了得到所需的次级电压,可将两个或多个次级绕组串联起来使用。采用串联法使用电源变压器时,参加串联的各绕组的同名端必须正确连接,不能搞错。否则,变压器不能正常工作。I.电源变压器短路性故障的综合检测判别。电源变压器发生短路性故障后的主要症状是发热严重和次级绕组输出电压失常。通常,线圈内部匝间短路点越多,短路电流就越大,而变压器发热就越严重。检测判断电源变压器是否有短路性故障的简单方法是测量空载电流(测试方法前面已经介绍)。存在短路故障的变压器,其空载电流值将远大于满载电流的10%。当短路严重时,变压器在空载加电后几十秒钟之内便会迅速发热,用手触摸铁芯会有烫手的感觉。此时不用测量空载电流便可断定变压器有短路点存在。
国内四大变压器制造厂商为:沈阳变压器厂(2004年被特变电工股份有限公司兼并),西安变压器厂,保定变压器厂,特变电工股份有限公司,国外有名的公司有西门子,ABB等。
磁屏蔽
人造卫星远离地面几千至几万千米,为了使各种资料正确无误发回地球,应避免卫星上 的各种仪器间的相互干扰和宇宙磁场的影响;在电信技术中,有些通信设备的线圈会产生互感;各种精密仪器仪表,为保持精确,必须避免杂散磁场和地磁场的影响,这一切必须用到磁屏蔽。怎样进行磁屏蔽?可以先做一个简单实验研究一下。
拿1块铜板(或1张厚纸板)放在1块磁铁下面一定距离处,桌上放一根铁针,使磁铁和铜板(或厚纸板)一起慢慢往下移动,当磁铁离桌面一定高度时,铁针就被吸到铜板(或厚纸板)上,记下这个高度。
将铜板换成铁板,重复上述实验,这时磁铁必须放得离铁针更近时才能把铁针吸到铁板上,这表明铁板挡住了一部分磁感线。如果用的是纯铁板,磁铁必须放得更近才能吸起铁针。这表明纯铁板挡住了更多的磁感线。
如用纯铁罩把磁铁完全包围起来,互相不接触,即使铁针再靠近一些纯铁罩,也不能被吸起来。这是因为铜板或厚纸板是非磁性材料,磁感线可以毫无阻挡地穿过它们,所以铁针很容易吸起来。铁板是磁性材料,它的磁导率较大,有良好的导磁作用,凡进入铁板的磁感线大部分集中在铁板里了。将纯铁做成屏蔽罩,把磁铁封闭起来,磁铁的磁感线绝大部分都集中在纯铁屏蔽罩内。屏蔽罩约厚,屏蔽效果越好。如果磁铁或其他能够产生磁场的物体置于纯铁屏蔽罩外面,则罩外的磁感线也基本上不能进入罩内,对于罩内的物体同样可以免受罩外磁场的影响,从而达到了屏蔽目的。
对于高频交变磁场,情况就迥然不同了。铜和铝等导电性能良好的金属反而是理想的磁屏蔽材料。铜罩之所以能够屏蔽高频交变磁场,其原因在于高频交变磁场能在铜罩上引起很大的涡流,由于涡流的去磁作用,铜罩处的磁场大大减弱,以致罩内的高频交变磁场不能穿出罩外。同样道理,罩外的高频交变磁场也不能穿入罩内,从而达到磁屏蔽的目的。通常金属的电阻率越小,引起的涡流越大,用这种金属做成的屏蔽罩屏蔽效果越好。铁等磁性材料的电阻率一般都较大,引起的涡流就小,去磁作用就小;另一方面,磁性材料的高频功率损耗大,屏蔽效果差,因此屏蔽高频交变磁场时不采用磁性材料。
屏蔽的原理是相同的。但是在高频情况下,目前还没有导磁率很高的材料用于屏蔽。在低频状态下磁导率很高的材料,到了高频状态,磁导率就变得很低了。即使专用的高频铁氧体,也很难超过100,与低频下硅钢片或者纯铁数千上万的磁导率相比差的很多,不能有效地聚集磁场。同时,这些材料都是一次性成型材料,烧制完成以后不能二次加工以适应不同的需要。因此,才不得不使用涡流损耗、反电动势产生反向磁场的方式来实现屏蔽。而产生涡流好的材料,就是如纯铜、纯铝等低电阻率的材料。
变压器用途:
变压器有铁芯和线圈组成.变压器线圈分初级线圈和次级线圈.在初级线圈中通交流电时.变压器铁芯就产生了交变的磁场.次级线圈就感应出与初级频率相同的交流电.变压器线圈的圈数比等于电压比.例如一个变压器的初级线圈是880圈.次级是88圈.在初级接入220V电压.次级就会输出22V的交流电压.变压器不仅可以降压也可升压.远距离输电一般都用变压器升高电压.在用电处再用变压器降到我们所需要的电压
直流变压器的说法不对.直流电不能变压.直流电要变换电压首先要用电子元件将直流电变为交流电,然后用变压器变换电压.这个设备叫逆变器.
农网和城网经大力改造后,配变的性能和运行质量虽有所改观,但仍有较大的隐患,大致存在以下几个问题:
1、根据目前城农网的普遍特点,负载率在大多数时间内为30-40%,但在高峰时,会经常超负荷运行。一方面,有很多不确定因素,例如,夏天持续高温,空调负荷勐增,农忙或抗旱期间,农网负荷骤增,都有可能使配变短时过载100%;另一方面,高速发展的经济增长带来工业和居民用电需求的增长速度超过电网的建设速度,过载现象一时难以避免。
2、配变虽有报警和保护装置,但即使报警或跳闸后也无法在短时间内更换变压器,结果造成配变持续超负荷以致烧毁。
3、过载配变的大隐患是可能发生火灾,并且在燃烧时产生有害气体。
4、随着两网改造和电网不断发展,配电变压器用量剧增,配变使用寿命期后的环保、回收问题,将成为一个严峻课题。
5、箱变在城市供用电中大批使用,目前配套的变压器有油变也有干变,油变缺陷之一,就是油老化,绝缘性能下降,维护换油困难;干变的缺陷是防护等级低不宜户外运行。由于箱变内环境温度高,供电部门对其中变压器的负载能力忧心忡忡,难以确定其满载和过载的能力,一旦超负荷出现故障,调换变压器更为困难。
变压器国外的电网也曾有这样的经历,在20世纪60年代至70年代初,欧美在经济膨胀时期建设配电网络之初,配电变压器负载率仅为40%至50%。随着经济的高速增长,这些电网系统变得陈旧或不堪重负,尤其是配电变压器的负载率持续增长,变压器经常过载,导致故障上升,增容费用也大大增加。
国外常用两种方法来解决上述问题:其一,采用nomex 绝缘纸和普通油配合的混合绝缘技术对传统变压器进行改造,改造后的设备容量显着提高。电力公司可以更灵活地运行这些设备,负载下降时损耗较低,负载高峰期又可提供较大的容量。已经认可和实施增容改造的国家有:美国、英国、印度、加拿大、澳大利亚和德国等十几个国家;其二,以nomex 绝缘纸和高燃点油配合生产高燃点油变压器。
20世纪80年代,法国开发使用硅油和nomex 绝缘纸材料的柱上变压器,其广泛运用在人员拥挤的重要区域。国内电力机车上的机载变压器也有采用nomex 绝缘纸和硅油组合的绝缘系统的,已有多年运行经验。由于可持续发展战略和当今环保的要求,近年来,国内外制造厂及专家不断探索,采用nomex 绝缘纸和清洁可分解的高燃点β油制造出安全、环保的配电变压器将有效地减少和消除隐患。
杜邦nomex 绝缘纸绝缘耐热等级为c级(即220℃),燃点在限氧指数以下,寿命期后可分解回收,绝缘性能和机械强度远远优于普通电缆纸。用nomex 绝缘纸制造生产的敞开式干变因其安全、环保的特性,近年来被国内用户广泛认可和接受。β油是由美国dsi公司生产的一种性能优良的高科技环保油,其大的特点是燃点高,防火性好(公安部消防科研所测试,其燃点为310℃,而普通油为165℃),它是从石油中提炼出来的,其成分为100%碳氢化合物,可完全生物降解,无毒性,对人体和环境无害,可循环利用,而且与变压器中其他材料具有相容性,与常规油可以混合使用。
β油与杜邦耐热达220℃的nomex 绝缘纸配合制造的油变,符合美国标准nec450-23。目前,在美国国家实验室、五角大楼、空军基地、国家海岸护卫队、海军、航空总署等地都使用这种变压器,且运行良好。在使用高燃点油变压器的场所,发生火灾和爆炸的概率大大降低。这种新型变压器近几年在美国得到迅速发展,已占到电力变压器的5%而且比例还在上升。国际电工委员会也正在考虑制定这种利用高耐温绝缘材料作为绝缘系统的配电变压器的设计导则。
nomex 绝缘纸β油变,它的优点是安全、防火、运行费用小及环保性能好,大特点是可靠性强。使用这种nomex 绝缘纸β油变,将会大大改变目前的配变状况。
1、短期超负荷不会出事,经过计算和试验,超负荷12个小时运行,其线圈和油的热点温度均低于其耐温等级,不会损伤其绝缘寿命。
2、长期使用可免换油、免维护,克服现有普通油变缺点,节约运行成本。
3、β油与普通变压器油相比,其粘度明显高于普通变压器油;而且变压器油箱设有独特的压力释放装置,运行中不会过压,因此不易渗漏。
4、具有独特的安全防火特性,降低了运行风险;
5、nomex 绝缘纸β油变压器具有干变的优点,既适用于安全、防火的高层建筑,又适宜户外运行。
6、数量庞大的配电变压器,使用寿命期后材料的回收和循环使用以及废弃物的生物降解是可持续发展和环保的要求,而nomex 绝缘纸在寿命期后可生物降解,β油本身的工作温度远远低于其耐温等级,因此可经过处理再循环使用,处理后的废弃物可被土壤中的微生物分解并无毒性,因此不会在环境中长期聚集而造成污染。
利用新材料、新技术制造新型配变,以消除配变安全隐患和环保问题值得人们探讨
11 问题处理
干燥处理
感应加热法
这种方法是将器身放在油箱内,外绕组线圈通以工频电流,利用油箱壁中涡流损耗的发热来干燥。此时箱壁的温度不应超过115~120℃,器身温度不应超过90~95℃。为了缠绕线圈的方便,尽可能使线圈的匝数少些或电流小些,一般电流选150A,导线可有用35~50mm2的导线。油箱壁上可垫石棉条多根,导线绕在石棉条上。
热风干燥法
这种方法是将器身放在干燥室内通热风进行干燥。进口热风温度应逐渐上升,高温度不应超过95℃,在热风进口处应装设过滤器以防止火星和灰尘进人。热风不要直接吹向器身,尽可能从器身下面均匀地吹向各个方向,使潮气由箱盖通气孔放出。
渗漏问题
变压器变压器的渗漏是变压器故障的常见问题,特别是一些运行年限已久的变压器更为普遍,轻者污染设备外表影响美观,重者威胁设备安全运行甚至人员生命,变压器的渗漏包括进出空气(正常经吸湿器进入的空气除外和渗漏油。
原因
造成渗漏的原因主要有两个方面:一方面是在变压器设计及制造工艺过程中潜伏下来的;另一方面是由于变压器的安装和维护不当引起的。变压器主要渗漏部位经常出现在散热器接口、平面碟阀帽子、套管、瓷瓶、焊缝、砂眼、法兰等部位。
渗漏油的分类
变压器的渗漏油可分为内漏和外漏两种,而外漏又可分为焊缝渗漏和密封面渗漏两种。
1)内漏:内漏普遍的就是充油套管中的油以及有载调压装置切换开关油室的油向变压器本体渗漏。
2)外漏:外漏分为焊缝渗漏和密封面渗漏两种:
焊缝渗漏:焊缝渗漏是由于钢板焊接部位存在砂眼所造成的。
密封面渗漏:密封面渗漏情况比较复杂,要具体问题具体分析。在变压器大修或安装过程中应把防止密封面渗漏作为一项重要工作。
变压器渗漏油的原因分析
1、橡胶密封件失效和焊缝开裂
变压器的焊点多、焊缝长,而油浸式变压器是以钢板焊接壳体为基础的多种焊接和连接的集合体。一台31500kVA变压器的总焊点达70余处,焊缝总长近20m左右,因此渗漏途径可能较多。直接渗漏的原因是橡胶密封件失效和焊缝开裂、气孔、夹渣等。
2、密封胶件老化、龟裂、变形
变压器渗漏多发生在连接处,而95 %以上主要是由密封胶件引起的。密封胶件质量的好坏主要取决于它的耐油性能,耐油性能较差的,老化速度就较快,特别是在高温下,其老化速度就更快,极易引起密封件老化、龟裂,变质、变形,以至失效,造成变压器渗漏油。
3、变压器的制造质量
变压器在制造过程中,油箱焊点多、焊缝长、焊接难、焊接材料、焊接规范、工艺、技术等都会影响焊接质量,造成气孔、砂眼、虚焊、脱焊现象从而使变压器渗漏油。
4、板式蝶阀质量欠佳
变压器另外一个经常发生渗漏的部位在板式蝶阀处,较早前生产的变压器,使用的普通板式蝶阀连接面比较粗糙、单薄,单层密封,属淘汰产品,极易引起变压器渗漏油。
5、安装方法不当
法兰连接处不平,安装时密封垫四周不能均匀受力,人为造成密封垫四周螺栓非均匀受力;法兰接头变形错位,使密封垫一侧受力偏大,一侧受力偏小,受力偏小的一侧密封垫因压缩量不足就容易引起渗漏。此现象多发生在瓦斯继电器连接处及散热器与本体连接处;还有一点就是密封垫安装时,其压缩量不足或过大,压缩量不足时,变压器运行温度升高油变稀,造成变压器渗油,压缩量偏大,密封垫变形严重,老化加速使用寿命缩短。
6、托运不当
托运及施工运输过程中零部件发生碰撞以及不正确吊装运输,造成部件撞伤变形、焊口开焊、出现裂纹等,引起渗漏。
故障分析解决方案
1、焊接处渗漏油
主要是焊接质量不良,存在虚焊,脱焊,焊缝中存在针孔,砂眼等缺陷,变压器出厂时因有焊药和油漆覆盖,运行后隐患便暴露出来,另外由于电磁振动会使焊接振裂,造成渗漏。对于已经出现渗漏现象的,首先找出渗漏点,不可遗漏。针对渗漏严重部位可采用扁铲或尖冲子等金属工具将渗漏点铆死,控制渗漏量后将治理表面清理干净,目前多采用高分子复合材料进行固化,固化后即可达到长期治理渗漏的目的。
2、密封件渗漏油
密封不良原因,通常箱沿与箱盖的密封是采用耐油橡胶棒或橡胶垫密封的,如果其接头处处理不好会造成渗漏油故障,有的是用塑料带绑扎,有的直接将两个端头压在一起,由于安装时滚动,接口不能被压牢,起不到密封作用,仍是渗漏油。可用福世蓝材料进行粘接,使接头形成整体,渗漏油现象得到很大的控制;若操作方便,也可以同时将金属壳体进行粘接,达到渗漏治理目的。
3、法兰连接处渗漏油
法兰表面不平,紧固螺栓松动,安装工艺不正确,使螺栓紧固不好,而造成渗漏油。先将松动的螺栓进行紧固后,对法兰实施密封处理,并针对可能渗漏的螺栓也进行处理,达到完全治理目的。对松动的螺栓进行紧固,必须严格按照操作工艺进行操作。
4、铸铁件渗漏油
渗漏油主要原因是铸铁件有砂眼及裂纹所致。针对裂纹渗漏,钻止裂孔是消除应力避免延伸的佳方法。治理时可根据裂纹的情况,在漏点上打入铅丝或用手锤铆死。然后用丙酮将渗漏点清洗干净,用材料进行密封。铸造砂眼可直接用材料进行密封。
5、螺栓或管子螺纹渗漏油
出厂时加工粗糙,密封不良,变压器密封一段时间后便产生渗漏油故障。采用高分子材料将螺栓进行密封处理,达到治理渗漏的目的。另一种办法是将螺栓(螺母)旋出,表面涂抹福世蓝脱模剂后,再在表面涂抹材料后进行紧固,固化后即可达到治理目的。
6、散热器渗漏油
散热器的散热管通常是用有缝钢管压扁后经冲压制成在散热管弯曲部分和焊接部分常产生渗漏油,这是因为冲压散热管时,管的外壁受张力,其内壁受压力,存在残余应力所致。将散热器上下平板阀门(蝶阀)关闭,使散热器中油与箱体内油隔断,降低压力及渗漏量。确定渗漏部位后进行适当的表面处理,然后采用福世蓝材料进行密封治理。
7、瓷瓶及玻璃油标渗漏油
通常是因为安装不当或密封失效所制。高分子复合材料可以很好的将金属、陶瓷、玻璃等材质进行粘接,从而达到渗漏油的根本治理。
8、其它部位渗漏油
变压器除上述渗漏形式外,变压器渗漏有时呈部件渗漏。
电力变压器是一种改变交流电压大小静止的电力设备,是电力系统中核心设备之一,在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是国民经济各行各业和千家万户能量来源的必经之路。如果变压器发生故障,将影响电力系统的安全稳定运行电力系统中很重要的设备,一旦发生事故,将造成很大的经济损失。分析各种电力变压器事故,找出原因,总结出处理事故的办法,把事故损失控制在小范围内,尽量减少对系统的损害。
由于每台变压器负荷大小、冷却条件及季节不同,运行中不仅要以上层油温允许值为依据,还应根据以往运行经验及在上述情况下与上次的油温比较。如油温突然增高,则应检查冷却装置是否正常,油循环是否破坏等,来判断变压器内部是否有故障。
变压器的安全运行管理工作是我们日常工作的重点,通过对变压器的异常运行情况、常见故障分析的经验总结,将有利于及时、准确判断故障原因、性质,及时采取有效措施,确保设备的安全运行变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。现根据对变压器的运行、维护管理经验。
12 安全规程
岗位安全职责
1.负责电力变压器安装前的检查和保养,并做好检查和保养的记录。
2.负责安装过程中的变压器的完好无损。
3.严格按安全技术交底和操作规程实施作业。
岗位任职条件
1.接受过专门的专业安全技术及技能培训。
2.有统一配发的变配电设备安装上岗证,持证上岗。
上岗作业准备
1.接受安全技术交底,清楚其内容,具体包括:变压器的安装高度、一次高压引下线、二次出线、配电箱安装等。
2.施工前,检查电力变压器规格型号是否满足设计要求。
3.施工前,施工负责人必须亲自检查现场布置情况,作业人员应认真检查各自操作项目的现场布置情况。
安全操作规程
1.大型油浸变压器安装前必须依据安装使用说明书编写安全施工措施。
2.充氮变压器未经充分排氮(其气体含氧密度>18%),严禁工作人员入内。充氮变压器注油时,任何人不得在排气孔处停留。
3大型油浸变压器在放油及滤油过程中,外壳及各侧绕组必须可靠接地。
4.变压器吊芯检查时,不得将芯子叠放在油箱上,应放在事先准备好的干净支垫物上。在放松起吊绳索前,不得在芯子上进行任何工作。
5.变压器吊罩检查时,应移开外罩并放置干净垫木上,再开始芯部检查工作。吊罩时四周均应设专人监护,严禁外罩碰及芯部任何部位。
6.变压器吊芯或吊罩时必须起落平稳。
7.进行变压器内部检查时,通风和照明必须良好,并设专人监护;工作人员应穿无钮扣、无口袋的工作服、耐油防滑靴,带入的工具必须拴绳、登记、清点,严防工具及杂物遗留在器体内。
8.外罩法兰螺栓必须对称均匀地松紧。
9检查大型变压器芯子时,应搭设脚手架,严禁攀登引线木架上下。
10.储油和油处理现场必须配备足够可靠的消防器材,必须制定明确的消防责任制,场地应平整、清洁,10m范围内不得有火种及易燃易爆物品。
11.变压器附件有缺陷需要进行焊接处理时,应放尽残油,除净表面油污,运至安全地点后进行。
12.变压器引线焊接不良需在现场进行补焊时,应采取绝热和隔离措施。
13.对已充油的变压器微小渗漏允许补焊。
14.变压器的顶部应有开启的孔洞。
15.焊接部位必须在油面以下。
16.严禁火焊,应采用断续的电焊。
17.焊点周围油污应清理干净。
18.应有妥善的安全防火措施,并对参加人员进行安全技术交底。
19.变压器进行干燥前应制定安全技术措施及必要的管理制度。
20.干燥变压器使用的电源及导线应经计算,电路中应有过负荷自动切断装置及过热报警装置。
21.干燥变压器时,应根据干燥的方式,在铁芯、绕组或上层油面上装设温度计,但严禁使用水银温度计。
22.干燥变压器应设值班人员。值班人员应经常巡视各部位温度有无过热及异常情况,并作好记录。值班人员不得擅自离开干燥现场。
23.采用短路干燥时,短路线应连接牢固。采用涡流干燥时,应使用绝缘线;使用裸线时必须用低压电源,并应有可靠的绝缘措施。
24.使用外接电源进行干燥时,变压器外壳应接地。
25.使用真空热油循环进行干燥时,其外壳及各侧绕组必须可靠接地。
26.干燥变压器现场不得放置易燃物品,并应准备足够的消防器材。
其他注意事项
1.在电力变压器安装过程中,应由经验丰富的设备安装负责人现场指挥。
2.非施工人员不得进入作业区。
3.夜间施工时,作业区应有良好的照明。
日常保养
一、允许温度
变压器运行时,它的线圈和铁芯产生铜损和铁损,这些损耗变为热能,使变压器的铁芯和线圈温度上升。若温度长时间超过允许值会使绝缘渐渐失去机 械弹性而使绝缘老化。
变压器运行时各部分的温度是不相同的,线圈的温度高,其次是铁芯的温度,绝缘油温度低于线圈和铁芯的温度。变压器的上部油温高于下部油温。变压器运行中的允许温度按上层油温来检查。对于A 级绝缘的变压器在正常运行中,当周围空气温度高为400C 时,变压器绕组的极限工作温度是1050C。由于绕组的温度比油温度高 100C,为防止油质劣化,规定变压器上层油温高不超过950C,而在正常情况下,为防止绝缘油过速氧化,上层油温不应超过850C。对于采用强迫油循环水冷却和风冷的变压器,上层油温不宜经常超过750C。
二、允许温升
只监视变压器运行中的上层油温,还不能保证变压器的安全运行,还必须 监视上层油温与冷却空气的温差—即温升。变压器温度与周围空气温度的差值,称为变压器的温升。对A 级绝缘的变压器,当周围高温度为400C 时,国家 标准规定绕组的温升650C,上层油温的允许温升为550C。只要变压器温升不超 过规定值,就能保证变压器在额定负荷下规定的运行年限内安全运行。(变压器在正常运行时带额定负荷可连续运行20 年)
三、合理容量
在正常运行时,应使变压器承受的用电负荷在变压器额定容量的75—90% 左右。
四、变压器低压大不平衡电流不得超过额定值的25%;变压器电源电压变化允许范围为额定电压的正负5%。
如果超过这一范围应采用分接开关进行调整,使电压达到规定范围。通常是改变一次绕组分接抽头的位置实现调压的,连接及切换分接抽头位置的装置叫分接开关,它是通过改变变压器高压绕组的匝数来调整 变比的。电压低对变压器本身无影响,只降低一些出力,但对用电设备有影响;电压增高,磁通增加,铁芯饱和,铁芯损耗增加,变压器温度升高。
变压器五、过负荷
过负荷分正常过负荷和事故过负荷两种情况。正常过负荷是在正常供电情况下,用户用电量增加而引起的。它将使变压器温度升高,导致变压器绝缘加速老化,使用寿命降低,因此,一般情况下不允许过负荷运行。特殊情况变压器可在短时间内过负荷运行,但在冬季不得超过额定负荷30%,夏季不得超过额 定负荷的15%。此外,应根据变压器的温升与制造厂规定来确定变压器的过负荷能力。
当电力系统或用户变电站发生事故时,为保证对重要设备的连续供电,故允许变压器短时间过负荷运行,即事故过负荷,事故过负荷时会引起线圈温度超过允许值,因此对绝缘来讲比正常条件老化要快。但事故过负荷的机会少,在一般情况下变压器又是欠负荷运行,所以短时的过负荷致于损坏变压器的绝缘。事故过负荷的时间及倍数应根据制造厂规定执行。
变压器的保护
变压器综合保护
变压器综合保护专用于电力变压器中性点,以实现变压器中性点接地运行或不接地运行两种不同的运行方式;从而避免由于系统故障,引发变压器中性点电压升高造成对变压器的损害。本产品广泛应用于电力、冶金、石化、建筑、环保等领域。
变压器差动保护
变压器的差动保护是变压器的主保护,是按循环电流原理装设的。 主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。 在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同级性端都朝向母线侧,则将同级性端子相连,并在两接线之间并联接入电流继电器。在继电器线圈中流过的电流是两侧电流互感器的二次电流差,也就是说差动继电器是接在差动回路的。 从理论上讲,正常运行及外部故障时,差动回路电流为零。实际上由于两侧电流互感器的特性不可能完全一致等原因,在正常运行和外部短路时,差动回路中仍有不平衡电流Iumb流过,此时流过继电器的电流IK为 Ik=I1-I2=Iumb 要求不平衡点流应尽量的小,以确保继电器不会误动。 当变压器内部发生相间短路故障时,在差动回路中由于I2改变了方向或等于零(无电源侧),这是流过继电器的电流为I1与I2之和,即 Ik=I1+I2=Iumb 能使继电器可靠动作。 变压器差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备、以及连接这些设备的导线。由于差动保护对保护区外故