以往这种滤波电路主要采用无源元件R、L和C组成,60年代以来,集成运放获得迅速发展,由它和R、C组成的滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗比较低,构成
通常用频率响应来描述滤波器的特性。对于滤波器的幅频响应,常把能够通过信号的频率范围定义为通带,而把受阻或衰减信号的频率范围称为阻带,通带和阻带的界限频率叫做截止频率。
滤波器在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的位置分布,滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
带通滤波器电路,如图1所示。图中R1、C2组成低通网络,R3、C1组成高通网络,A、Ra、Rb组成了同相比例放大电路,三者共同组成了具有放大作用的二阶有源
可画出其幅频响应曲线时,电压放大倍数最大。带通滤波器的通频带宽度为BW0.7=ω0/(2πQ)=f0/Q,显然Q值越高,则通频带越窄。
通频带越窄,说明其对频率的选择性就越好,抑制能力也就越强。理想的幅频特性应该是宽度为BW0.7的矩形曲线(a)所示。在通频带内A(f)是平坦的,而通带外的各种干扰信号却具有无限抑制能力。各种带通滤波器总是力求趋近理想矩形特性。
在工程上,定义增益自A(f0)下降3 dB(即0.707倍)时的上、下限频率之差值为通频带,用BW0.7表示。要求其值大于有用信号的频谱宽度,保证信号的不失真传输。
变化时,既影响通带增益A0,又影响Q值(进而影响通频带BW0.7),而中心角频率ω0与通带增益A0无关。
为了能更好的了解二阶带通滤波器在实际电路中应用的效果,设计了如图4的电路进行实验验证。图中U1A部分为放大电路,UlB部分为二阶带通滤波器电路。